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I. INTRODUCTION for the parameters. Given this covariance matrix, the covari-

HE estimation of time-activity curves and kinetic mode?nce between the time-activity curve models for the blood input
: ye . . unction and tissue volumes of interest can be calculated and
parameters directly from projection data is potentially use- : R
ful for clinical dynamic single photon emission computed toqsed_ to esUmate Compa”mef‘ta' model kinetic parameters more
mography (SPECT) studies, particularly in those clinics thg{emsely, using nonlinear weighted least squares [10,11].
have only single-detector systems and thus are not able t0 peft, FAsT COMPUTATION OF STATISTICAL UNCERTAINTY
form_ rapld_ tor_nog_raphlc acquisitions. Because the radiopharma- FOR SPATIOTEMPORAL DISTRIBUTIONS
ceutical distribution changes while the SPECT gantry rotates, ) _ ) ) .
Following our development in [5], time-varying activity con-

projections at different angles come from different tracer dis- . ithi | £ ina th
tributions. A dynamic image sequence reconstructed from tﬁ%ntratlons within volumes of Interest encompassing the pro-

inconsistent projections acquired by a slowly rotating gant# cted SPECT f|eld of View can be madeled by _selectmg a set
can contain artifacts that lead to biases in kinetic paramet Fst_emporal basis f_unctlon_s capable of representlng typlc_al _tlme
estimated from time-activity curves generated by overlaying r ariations and having desired smoothness properties. Similarly,

gions of interest on the images. If cone beam collimators j spatially npnuniform activity concentration vv_ithin a particu-.
used and the focal point of the collimators always remains i qy volumfe of |r_1t(|erbest_ce;n be_mode(lse_d by selectlfng an app:rtc))prl_—
particular transaxial plane, additional artifacts can arise in ot £ sgt 0 Spgt'a as:s un.c'il(t))ns.. f|ven.a se]:c 0 ';]empcl)ra aS|fs
planes reconstructed using insufficient projection samples [1]74f'ctions anﬁ_ sets Of sp:;ha aT'_S unctions for t eI \éo u_mfes 0
the projection samples truncate the patient's body, this can red§€rest th)’e iclents ng_ e rtlas? ting Epaﬂotempora. asis ;nc'
in additional image artifacts. To overcome these sources of piins ca_nh ehestlmat_e irect Y r(;m the SPEFCT projection data,
in conventional image based dynamic data analysis, we and N9 With the covariance matrix for the coefficients.
ers have been investigating the estimation of time-activity CUNVES coyariance Matrix for the Spatiotemporal Basis Function
and kinetic model parameters directly from dynamic SPECT -

- : X sl Coefficients
projection data by modeling the spatial and temporal distribu- i o " ) i .
tion of the radiopharmaceutical throughout the projected field Denoting the projection of the™ spatial basis function along

of view [2-8]. ray ¢ at anglej by «;}, and the integral of the'™ temporal ba-

In our previous work we developed a computationally eﬁﬁ_is function during the time interval associated with angtd
cient method for fully four-dimensional (4-D) direct estimatiofiOtationk by vj;., the projection equations can be expressed as

of spatiotemporal distributions from dynamic SPECT projection M N
data [5], which extended Formiconi’s least squares algorithm for Dijk = Z Z A WIVTy, (1)
reconstructing temporally static distributions [9]. In addition, me1n=1

we studied the biases that result from modeling various ordey,

of temporal continuity and using various tw_ne sa_mpllngs [5 ar coefficients associated with the time integrals of the projec-
In the present work, we address computational isSues assqis of the spatiotemporal basis function,is the number of

ated with evaluating the statistical uncertainty ofspatiotempogHatial basis functions, anll is the number of temporal basis

model parameter estimates, and use Monte Carlo Simumionﬁfﬁctions. The criterion which is minimized by varying the lin-

validate a fast algorithm for computing the covariance matrg(ar coefficients,,,, is the weighted sum of squares function

fere thep; ;1 are the modeled projections, thg,,, are the lin-
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search Scientific Computing (NERSC) Center. weighting factors/ is the number of projection rays per angle,
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J is the number of angles per rotation, aiidis the number of where .~ is the [m” + (n” — 1)M]" element ofa, and
rotations. Typically, the weighting factors are either unity for ahx” denotes scalar multiplication. Rearranging the summations
unweighted fit or the estimated variances of the projections fgelds

a weighted fit.
Equations (1) and (2) can be rewritten in matrix form as o A K
Qb — Z Z Q' X

p — Fa (3) m'’=1n'""=1
J I K
and > [S gy’ | [ it
) - j=1 Li=1 k=1 9
X’ = (p” — Fa) "'W(p* — Fa), ) Mo ; ®
_ s m,,n/m// nn’n”
respectively, where is an/JK element column vector whose B Zl Zl /' ;aﬂ b
m=1n"= =

[i + (5 — I+ (k — 1)IJ]™ element isp;jx, F is anIJK x vy
MN matrix whose{[i + (j — 1)I + (k — 1)I.J],[m + (n — _ Z Z i
1) M1} element isufvT, ais anM N element column vector o L m'n’"Y ’
whose[m + (n— 1) M]™" element isi,,,,,, p* is anlJ K element o
column vector whosgi + (j — 1) + (k — 1)I.J]" element is where the factors”*™ ™" and 37" denote the summations
P}, andWiis anijll( xIJK dlagona}l matrix whos{a.+ (j. - 25:1 umumluz,/ and Zlf:l vﬁ@}‘évﬂ', respectively, and the
1)I + (k — 1)IJ])" diagonal element i$/W; ;. The criterion,

7 g
ro ! 1", 1 J ’ " ’ "
i ; : . factory™mnm nmmon denotes the su_, /"™ ™ g,
X2, is minimized by the vector of spatiotemporal basis functiofc or @3:1 &

J
Using the factorization given by equation (9), it can be

coefficients shown that most of the overhead associated with computing
a=(F"WF) 'FTwWp*. (5) the syrnmetric matrix elemer}ts,mff/m:/”' lies in calculating the
aj'™ ™ factors and the/™™™ ™ ™ ™" factors. These calcula-
The covariance matrix for the coefficieritss tions take abouf(1/N?) + 1]JQ multiply-and-add operations,

whereQ = (MN)?(MN +1)/2. By comparison, relatively
cov(a) = (FTWF) 'F"Wcov(p")WF(F'WF)~', (6) gtraightforward computation of the summations given by equa-
tion (8) takes abouiJ K@ multiply-and-add operations. Thus,
for the computer simulations described in Section 111, for which
I/N3 = 1/2, the factorization given by equation (9) reduces the
6csmputation by a factor of abo(®/3)I K = 20,000.

where coyp*) is the covariance matrix for the measured proje
tions. Given an estimate of cv*), estimates of the statistical
uncertainties of the coefficienfsare the square roots of the di-
agonal elements of the covariance matrix given by equation
and are denoted individually by, .. In general, the errors in g Covariance Between Integrated Time-Activity Curve Model
the coefficients are correlated and the covariance matrix given segments

by equation (6) has nonzero elements off the diagonal.

For an unweighted least squares reconstruction of the Spa@_ven an est|mat_e of C@)’ the covarlance _matnx for the
tiotemporal basis function coefficienss(i.e., for W an iden- spatiotemporal basis function coefficients, estimates of the co-

tity matrix), an estimate of the symmetrdd N x M N covari- variance between integrated segments of the time-activity curve

ance matrix cof&) can be obtained quickly from equation (G)models for the volumes of interest can be obtained as follows.
as follows. Assuming Poisson noise, the diagonal matrix hay-! "€ integral of the time-activity curve model for volume of
ing the modeled projections — Fa along the diagonal can pelnterestm, during the time interval associated with anglef

. N ~
used as an estimate of the covariance matrix for the measui@@tionk, can be expressed &s,,_; dmnvj,.. Thus, the co-
projections. Substituting this diagonal matrix for ¢pt) and Variance of this time integral with the time integral associated
the identity matrix forW, equation (6) can be rewritten as  With volume of interestn” during anglej” of rotation” is

cov(a) = (FTF)'FTdiag Fa)F(FTF)~!. 7 al al
(a)=(F'F) gFa)F(F F) (7 oV [ N amntlis >t
We have presented a method for quickly calculatifg F)~! n=1 n=1 (20)
in [5]. Using a similar development, the symmetheN x M N SR o y
matrix FTdiag(Fa)F can be calculated quickly as follows. De- = Z Vi GO, o) Vg
noting the{[m + (n — 1)M], [m’ + (n/ — 1)M]}" element of n=t=t
F'diagFa)F by ¢y"™ ™ one has and the variance of each time integral is
J K N
S D DI oy
=1 j=1 k=1 (8) n=1 (11)

M N N

/ N
~ ml/ n// m/ n/ n ~ ~ n/
§ : E : Am/'n'Uij Vg X U5 Vjks = § E Uik COV(a,,m, amn/) Ujk-

m!’=1n'"=1 n=1n'=1
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As a figure of merit related to the global precision of the time-
activity curve model for volume of interest, the following ex-
pression yields a squared noise-to-signal ratio calculated as the
mean (over all of the time segments) of the expected values of
the squared errors between the integrated segments of the “true”
and modeled curves, normalized by the mean square value of
the integrated segments of the “true” curve:

2 = =1 L - (12)

J K N .
Zj:l Zk:l Zn:l amn”?k

Substituting equation (11) into equation (12), the squared noi§
to-signal ratio¢2, can be calculated quickly by rearranging the
summations, precomputing the inner products of the temporal 180
basis functionsy™’ = 7_, 3, vy, and exploiting the ol
symmetry with respect to the indicesandn’:

N N R ~
2 _ 2an=12n'=1 COM @ s G V™™ s
fm - N N ~ N " . ( )
anl anzl Amyn Amn'V

I1l. COMPUTERSIMULATIONS 60
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ig. 1. Transverse cross section through the MCAT emission phantom, showing
“the truncation of data resulting from the use of cone beam collimators.
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To validate the fast algorithm presented in Section I, 1600 re-
alizations of cone beam projection data having Poisson noise
were generated using the simulation apparatus described in [5].

Simulated spatiotemporal distributions were obtained using time (min)
the Mathematical Cardiac Torso (MCAT) phantom developed at Fig. 2. Simulated time-activity curves for the volumes shown in Fig. 1.
the University of North Carolina [12]. The emission phantom
(Fig. 1) was composed of 128 contiguous 1.75 mm-thick slices
and contained the blood pool, three myocardial tissue volumes 10
of interest (normal myocardium, septal defect, and lateral de-
fect), liver, and background tissue. Projections were attenuated
using the corresponding MCAT attenuation phantom.

The simulated time-activity curves (Fig. 2) mimicked the ki-
netics of teboroxime [13]. The simulated 15 min data acquisi-
tion consisted off = 2048 cone beam projection rays per an-
gle (64 transversex 32 axial), J = 120 angles per revolution,
andK = 15 revolutions, and thus yielded about 3.7 million pro-
jection samples. The projection bins were 7 nxm/ mm at
the detector, and the detector was 30 cm from the center of the
field of view. The cone beam collimators had a hole diameter of . . , . . . . .

1g. 3. Piecewise quadratic B-spline temporal basis functions. Sixteen splines
2 mm, a length of 4 cm, and were offset 1 cm from the detector. are ysed to span 15 time segments having geometrically increasing length.
The focal length was 70 cm, which resulted in truncation of the The initial time segment length is 10 sec. The thirteenth spline is shown as
data (Fig. 1). Attenuation and geometric point response were@solid curve.
modeled using a ray-driven projector with line length weight-
ing [14]. Scatter was not modeled. The amplitude of the simderivative and yielded errors of less than 2% for noiseless pro-
lated blood input function was adjusted so that about 10 milligéctions, where the error was defined to be the root mean square
events were detected using the cone beam collimators. (rms) difference between the simulated curve and the spline

The spatial basis projection factor3! were defined by for- model, normalized by the rms value of the simulated curve [5].
ward projecting each of the six known emission volumes com-The computational benefit of using the factorization given
posing the MCAT phantom (Fig. 1). Each emission volume wédry equation (9) to estimate the covariance matrix for the spa-
modeled to contain spatially uniform activity, which yieldediotemporal basis function coefficients was evident in the sim-
M = 6 sets of spatial basis projection factors. ulations. The number of multiply-and-add operations used to

The temporal basis integral factary, were defined by inte- calculateF Tdiag(Fa)F was reduced from about 1.6 trillion to
grating N = 16 splines spanning 15 time segments having gabout 80 million. Using a 194-MHz R10000-based SGI work-
ometrically increasing length (Fig. 3). Piecewise quadratic Btation, it took 34 sec to estimate the 96 coefficients for the
splines were used with an initial time segment length of 10 sepatiotemporal basis functions, their covariance matrix, and the
The resulting curve models were continuous through their fisjuared noise-to-signal ratios given by equation (13).

20

3 6 9 12 15

time (min)
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TABLE |
ACTUAL AND ESTIMATED STATISTICAL UNCERTAINTIES FOR SPATIOTEMPORAL BASIS FUNCTION COEFFICIENT$OR 1600REALIZATIONS OF NOISY
PROJECTIONS THE SAMPLE STANDARD DEVIATIONS OF THE COEFFICIENT$THE SECOND COLUMN IN EACH OF THE FOUR SUBTABLES) AGREE CLOSELY
WITH THE SAMPLE MEANS OF THE ESTIMATED STATISTICAL UNCERTAINTIES(THE THIRD COLUMN IN EACH OF THE FOUR SUBTABLES).

blood pool normal myocardium septal defect lateral defect
n a1n [ d2n Tayy, a3n Gayy, dan Tiyy
sample samplg sample| sample samplg sample| sample samplg sample| sample samplg sample
mean sdev | mean mean sdev | mean mean sdev | mean mean sdev | mean

0.279 0.128 0.131| 0.0102 0.166 0.166| -0.0529 1.28 1.29 | -0.212 0.747 0.762
5.20 0.138 0.140| 1.05 0.171 0.174| 0.559 1.33 1.35 | 0.979 1.47 1.46
7.65 0.157 0.160| 2.30 0.185 0.187| 1.36 1.89 1.88 1.38 3.00 2.99
8.20 0.172 0.175| 3.75 0.331 0.333| 1.89 3.04 3.05 2.42 1.95 1.95
7.19 0.153 0.160| 5.15 0.222 0.219| 2.33 191 1.94 3.25 1.26 1.27
5.40 0.105 0.107| 6.30 0.148 0.145| 2.70 1.20 1.24 3.58 1.75 1.73
3.51 0.0974 0.0953 7.07 0.141 0.140| 2.87 1.50 154 3.59 0.876 0.864
2.00 0.0658 0.0668 7.36 0.108 0.109| 2.67 0.886 0.904| 3.11 1.08 1.09
1.04 0.0545 0.0543 7.21 0.0839 0.083q6 2.45 0.600 0.602| 2.44 0.593 0.602
10 | 0.535 0.0464 0.0444 6.71 0.0743 0.0735 2.02 0.560 0.562| 1.69 0.418 0.411
11 | 0.308 0.0361 0.0362 5.98 0.0632 0.0628 1.57 0.486 0.477| 1.03 0.364 0.354
12 | 0.208 0.0305 0.0298§ 5.13 0.0538 0.0530 1.13 0.397 0.399| 0.592 0.296 0.300
13 | 0.149 0.0250 0.0245 4.20 0.0454 0.0441 0.761 0.327 0.325| 0.307 0.258 0.253
14 | 0.103 0.0197 0.0201 3.28 0.0360 0.0365 0.478 0.268 0.270| 0.179 0.206 0.207
15| 0.0657 0.0167 0.016§ 2.39 0.0303 0.0308 0.268 0.232 0.234| 0.0853  0.165 0.170
16 | 0.0399 0.0169 0.0169 1.64 0.0314 0.0313 0.135 0.270 0.269| 0.0651 0.161 0.164

©oo~NOoOUA~AWNE

TABLE I ACKNOWLEDGMENT
ACTUA;j:VDEZSFT(;“:{T;;O'??OE';E'Z?'IZ"\?;QLF TV/ZIS()YSPF;OIT];IC’YIFII:—OAI\TSTIV'TY Thg authors thank the University of l_\lorth Carolina Medical
Imaging Research Laboratory for making the MCAT phantom
noise-to-signal Em available.
ratio (%) (%) This work was supported by the National Heart, Lung, and
sample  sample. sample  sample Blood Institute of the US Department of Health and Human
mean sdev | mean sdev .
Blood pool 151 035 156 0.008 Services under grants RO1-HL50663 and PO1-HL25840 and by
normal myocardium| 1.13 0.27 1.16 0.003 the Director, Office of Science, Office of Biological and Envi-
septal defect 325 9.1 325 2.6 ronmental Research, Medical Sciences Division of the US De-
'atef\‘,'e?efem 02?'657 086%1 gei?o ozdgm partment of Energy under contract DE-AC03-76SF00098. This
background 0242 0058 0247  0.0002 work was developed in part using the resources at the US De-

partment of Energy National Energy Research Scientific Com-
puting (NERSC) Center.

Table | shows that the sample means ofdhe , (the square
roots of the diagonal elements of the estimated covariance ma- REFERENCES
trix) were within 5% of the sample standard deviations of thg| H k Tuy, “An inversion formula for cone-beam reconstructioi§IAM J
amn (the estimated spatiotemporal basis functions coefficients), Appl Math vol. 43, no. 3, pp. 546-552, 1983. o
for the blood pool and myocardial tissue volumes. For the Iiv@ﬁ R H Huesman, B W Reutter, G L Zeng, and G T Gullberg, *Kinetic

. . parameter estimation from SPECT cone-beam projection measurements,”
and background tissue, the agreement was to within 4%. The phys Med Biglvol. 43, no. 4, pp. 973-982, 1998.

coefficients of variation for thé;,,, were less than 2%. [38] GT Gullberg, l?] H Huesaman, S G Ross, E VR Di Bglla, GL IZenﬁ, BW
) : Reutter, P E Christian, @nS A Foresti, “Dynamic cardiac single-photon
Table Il shows that the sample means ofghg(the estimated emission computed tomography,” Nuclear Cardiology: State of the Art

noise-to-signal ratios) were within 4% of the sample means of and Future DirectionsB L Zaret and G A Beller, Eds., chapter 11, pp.

the rms differences between the 1600 sets of time-activity curve 137-187. Mosby Inc, St Louis, 1999. _
A Sitek, E V R DiBella, and G T Gullberg, “Reconstruction from slow ro-

models and their corresponding mean_ curves_, r_]ormallzed by Eﬂe tation dynamic SPECT using a factor model,lIiformation Processing in
rms values of the mean curves. The time-activity curves for the Medical Imaging: Proceedings of the Sixteenth International Conference

septal and lateral defects exhibited the largest variability, be- A Kuba, M Samal, and A Todd-Pokropek, Eds., 1999, pp. 436-441.
[5] B W Reutter, G T Gullberg, and R H Huesman, “Direct least-squares es-

cause of their small spatlotemporal support. timation of spatiotemporal distributions from dynamic SPECT projections
using a spatial segmentation and temporal B-splinédEEE Trans Med
IV. FUTURE DIRECTIONS Imag, vol. 19, no. 5, pp. 434-450, 2000.

. . . . . [6] J S Maltz, “Direct recovery of regional tracer kinetics from temporally
The fast algorithm presented in Section Il will facilitate the ~ inconsistent dynamic ECT projections using dimension-reduced time-

study of the statistical variability that results from modeling var-_ ~ activity basis,"Phys Med Biglvol. 45, no. 11, pp. 3413-3429, 2000.
A Celler, T Farncombe, C Bever, D Noll, J Maeght, R Harrop, and

. L7 . . . 7]
'O_US orders of temporal CQ“t'”U'tY find using Vfir'ous time Sa'[n' D Lyster, “Performance of the dynamic single photon emission com-
plings, when estimating time-activity curves directly from dy-  puted tomography (dSPECT) method for decreasing or increasing activity
namic cone beam SPECT projections. It may also allow com- changes,Phys Med Biglvol. 45, no. 12, pp. 3525-3543, 2000.

| del kinetic parameters to be estimated from l[ﬁle T Farncombe, A Celler, C Bever, D Noll, J Maeght, and R Harrop, “The
partmental mo e. .p A A incorporation of organ uptake into dynamic spect (ASPECT) image recon-
curves more precisely, using nonlinear weighted least squares. struction,” [EEE Trans Nucl S¢ivol. 48, no. 1, pp. 3-9, 2001.



3D-2001 — THE SIXTH INTERNATIONAL MEETING ON FULLY 3-D IMAGE RECONSTRUCTION CONFERENCE RERAHES 44-47 (PREPRINT)

[9] AR Formiconi, “Least squares algorithm for region-of-interest evaluation
in emission tomography,IEEE Trans Med Imagvol. 12, no. 1, pp. 90—
100, 1993.

[10] R HHuesman and B M Mazoyer, “Kinetic data analysis with a noisy input
function,” Phys Med Biaglvol. 32, no. 12, pp. 1569-1579, 1987.

[11] D J Kadrmas, E V R Di Bella, R H Huesman, and G T Gullberg, “An-
alytical propagation of errors in dynamic SPECT: Estimators, degrading
factors, bias and noise,Phys Med Bial vol. 44, no. 8, pp. 1997-2014,
1999.

[12] B M W Tsui, J A Terry, ad G T Gullberg, “Evaluation of cardiac cone-
beam single photon emission computed tomography using observer per-
formance experiments and receiver operating characteristic analysis,”
vest Radiglvol. 28, no. 12, pp. 1101-1112, 1993.

[13] R K Narra, T Feld, ad A D Nunn, “Absorbed radiation dose to humans
from technetium-99m-teboroximeJ' Nucl Med vol. 33, no. 1, pp. 8893,
1992.

[14] GL Zeng, G T Gullberg, BM W Tsui, and J A Terry, “Three-dimensional
iterative reconstruction algorithms with attenuation and geometric point
response correction,lEEE Trans Nucl Sgivol. 38, no. 2, pp. 693-702,
1991.

DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. While this document is be-
lieved to contain correct information, neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibil-
ity for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or ser-
vice by its trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States Government or
any agency thereof, or The Regents of the University of Cali-
fornia. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Gov-
ernment or any agency thereof, or The Regents of the University
of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an
equal opportunity employer.



